The module provides a grounding in control systems modelling and analysis, using engineering mathematical techniques. It concludes with the examples of control systems design, underpinned by the modelling and analysis that precedes and informs the design. Syllabus: Control systems: what they are, examples of control systems, open-loop and closed-loop control systems, block diagrams of continuous (analog) and discrete-time (digital) control systems, system equations, differential equations, difference equations, linear and non-linear systems, free response, forced response, total response, steady state and transient responses, second-order systems, linearity and superposition, Laplace transform and its inverse , properties of Laplace transform, pole-zero mapping, application of Laplace transform to model systems, Routh-Hurwitz stability criterion, transfer functions and properties, analysis and design of feedback control systems, Bode analysis and design, Root-locus analysis and design, steady-state error analysis, introduction to advanced topics in control systems.

Sorry, there are no lists here yet. You could try:

  • Clicking My Lists from the menu. Your course enrolled lists are stored here.
  • Searching for the list using the form below:

Lists linked to Control Systems

There are currently no lists linked to this Module.